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Abstract

Background: To improve the quality of life of colorectal cancer patients, it is important to establish new screening methods
for early diagnosis of colorectal cancer.

Methodology/Principal Findings: We performed serum metabolome analysis using gas-chromatography/mass-spectrom-
etry (GC/MS). First, the accuracy of our GC/MS-based serum metabolomic analytical method was evaluated by calculating
the RSD% values of serum levels of various metabolites. Second, the intra-day (morning, daytime, and night) and inter-day
(among 3 days) variances of serum metabolite levels were examined. Then, serum metabolite levels were compared
between colorectal cancer patients (N = 60; N = 12 for each stage from 0 to 4) and age- and sex-matched healthy volunteers
(N = 60) as a training set. The metabolites whose levels displayed significant changes were subjected to multiple logistic
regression analysis using the stepwise variable selection method, and a colorectal cancer prediction model was established.
The prediction model was composed of 2-hydroxybutyrate, aspartic acid, kynurenine, and cystamine, and its AUC,
sensitivity, specificity, and accuracy were 0.9097, 85.0%, 85.0%, and 85.0%, respectively, according to the training set data. In
contrast, the sensitivity, specificity, and accuracy of CEA were 35.0%, 96.7%, and 65.8%, respectively, and those of CA19-9
were 16.7%, 100%, and 58.3%, respectively. The validity of the prediction model was confirmed using colorectal cancer
patients (N = 59) and healthy volunteers (N = 63) as a validation set. At the validation set, the sensitivity, specificity, and
accuracy of the prediction model were 83.1%, 81.0%, and 82.0%, respectively, and these values were almost the same as
those obtained with the training set. In addition, the model displayed high sensitivity for detecting stage 0–2 colorectal
cancer (82.8%).

Conclusions/Significance: Our prediction model established via GC/MS-based serum metabolomic analysis is valuable for
early detection of colorectal cancer and has the potential to become a novel screening test for colorectal cancer.
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Introduction

Colorectal cancer is one of the most common causes of cancer

death in developed countries [1]. Treatment methods based on

colonoscopy and surgery have advanced rapidly, and a large

number of patients with colorectal cancer achieve improvements

after therapy. However, advanced stage colorectal cancer reduces

the quality of life of patients receiving operative treatment or

chemotherapy. Therefore, methods that allow the early detection

and diagnosis of colorectal cancer are currently being sought. The

fecal occult blood test (FOBT) is the most commonly used

screening method for diagnosing colorectal cancer and is a

noninvasive and inexpensive method. However, the FOBT has

low sensitivity, especially for early stage colorectal cancer.

Colonoscopy is a more accurate and reliable approach for

diagnosing colorectal cancer, but it is difficult for elderly or

severely ill patients to undergo colonoscopy, and its high cost is

also a problem. Thus, examinations involving a combination of

conventional screening methods have been used for the diagnosis

of colorectal cancer; however, such examinations only detect

about 40% of colorectal cancers [2]. Therefore, it is necessary to

establish new screening methods for the early diagnosis of

colorectal cancer that are highly sensitive, specific, easy, and

noninvasive.

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40459



The human genome had been completely identified by the end

of 2003. Since then, proteomics, which is the comprehensive study

of the entire set of proteins expressed by a genome, has been

extensively studied, and many researchers have tried to apply

proteomic analysis to the medical field in order to find effective

diagnostic markers and elucidate unknown pathological conditions

[3]. Recently, metabolomics, which is the comprehensive study of

low molecular weight metabolites, has also been developed. In

clinical research involving metabolome analysis using a combina-

tion of high-throughput liquid-chromatography/mass-spectrome-

try (LC/MS) and gas-chromatography/mass-spectrometry (GC/

MS), Sreekumar et al. demonstrated that sarcosine is a potentially

important metabolic intermediary for prostate cancer cell invasion

and aggressivity [4]. In addition, a comprehensive and quantita-

tive analysis of the charged metabolites in tumor and normal

tissues obtained from colorectal and gastric cancer patients was

performed using capillary electrophoresis-mass spectrometry (CE/

MS) [5]. Thus, various types of clinical samples have been

analyzed by metabolome analysis using nuclear magnetic

resonance (NMR), GC/MS, LC/MS, CE/MS, and/or matrix

assisted laser desorption ionization-mass spectrometry (MALDI-

MS) in order to elucidate disease onset mechanisms and discover

novel biomarkers [6]. Among these techniques, GC/MS has a

long history and is easier to use than CE/MS or MALDI-MS,

although GC/MS has low sensitivity compared with LC/MS.

Moreover, there are more databases of GC/MS-based serum

metabolite analysis results than of LC/MS-based serum metabo-

lite analysis results. In addition, GC/MS can be applied to large-

scale studies with relative ease due to its high repeatability.

Therefore, in this study, the serum metabolite levels of colorectal

cancer patients and healthy volunteers were analyzed by GC/MS

analysis to establish new diagnostic tools for colorectal cancer, and

the stability and inter-day and intra-day variances of these serum

metabolite levels were also evaluated. Using a training set

composed of colorectal cancer patients (N = 60) and healthy

volunteers (N = 60), a colorectal cancer-prediction model was

established via multiple logistic regression analysis using the

stepwise variable selection method. Then, the validity of the

prediction model was assessed using a validation set consisting of

colorectal cancer patients (N = 59) and healthy volunteers (N = 63).

Methods

Ethics and Participants
This study was approved by the ethics committee at Kobe

University Graduate School of Medicine, and performed between

Feb. 2009 and Dec. 2011. The human samples were used in

accordance with the guidelines of Kobe University Hospital, and

written informed consent was obtained from all subjects. To

calculate the relative standard deviation (RSD)% for the serum

metabolome analysis results obtained by GC/MS, blood samples

were collected from one healthy 30-year-old male volunteer after

fasting in the early morning, and the serum was separated by

centrifugation at 3,000 x g for 10 min at 4uC. The serum was

transferred to a clean tube and stored at 280uC until use. To

evaluate the intra-day variance in serum metabolite levels, whole

blood samples were collected from healthy volunteers (n = 16) at

8:00 a.m.–9:00 a.m. before breakfast, 12:00 p.m.–1:00 p.m. before

lunch, and 6:00 p.m.–7:00 p.m. before dinner. To evaluate the

inter-day variance in serum metabolite levels, whole blood samples

(n = 16) were collected at 8:00 a.m.–9:00 a.m. before breakfast

once a day for a total of 3 days. For the training set, 60 serum

samples each were obtained from colorectal cancer patients and

healthy volunteers after fasting in the early morning. For the

validation set, 59 and 63 serum samples were collected from

colorectal cancer patients and healthy volunteers, respectively.

The serum samples from the colorectal cancer patients were

collected at Kobe University Hospital. None of the cancer patients

had any complicating diseases. The patients were diagnosed by

microscopy, biopsy, or surgical resection and classified using the

sixth edition of the International Union Against Cancer classifi-

cation (UICC). The serum samples from the healthy volunteers

were obtained from Kobe University Hospital and two other

facilities. In Kobe University Hospital, it was confirmed that there

is no abnormality of blood tests, endoscopic examinations,

diagnostic imaging, and/or medical interview. At two other

facilities, healthy volunteers were selected via health checks

including blood tests, endoscopic examinations, diagnostic imag-

ing, and/or medical interviews. Individuals that had been

diagnosed as requiring therapy, detailed examinations, and/or

observations were not treated as healthy volunteers. The

characteristics of all subjects are summarized in Table 1, Table

S1, and Table S2.

Experimental Procedures
The extraction of low molecular weight metabolites was

performed according to the method described in our previous

report [7]. Briefly, 50 ml of serum were mixed with 250 ml of a

solvent mixture (MeOH:H2O:CHCl3 = 2.5:1:1) containing 10 ml

of 0.5 mg/ml 2-isopropylmalic acid (Sigma-Aldrich, Tokyo,

Japan) dissolved in distilled water as an internal standard, and

then the solution was shaken at 1,200 rpm for 30 min at 37uC,

before being centrifuged at 16,000 x g for 3 min at 4uC. Two

hundred and twenty-five ml of the resultant supernatant were

transferred to a clean tube, and 200 ml of distilled water were

added to the tube. After being mixed, the solution was centrifuged

at 16,000 x g for 3 min at 4uC, and 250 ml of the resultant

supernatant were transferred to a clean tube, before being

lyophilized using a freeze dryer. For oximation, 40 ml of 20 mg/

ml methoxyamine hydrochloride (Sigma-Aldrich, Tokyo, Japan)

dissolved in pyridine were mixed with a lyophilized sample, before

being shaken at 1,200 rpm for 90 min at 30uC. Next, 20 ml of N-

methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (GL Science,

Tokyo, Japan) were added for derivatization, and the mixture was

incubated at 1,200 rpm for 30 min at 37uC. The mixture was then

centrifuged at 16,000 x g for 5 min at 4uC, and the resultant

supernatant was subjected to GC/MS measurement.

According to the method describe in a previous report [8], GC/

MS analysis was performed using a GCMS-QP2010 Ultra

(Shimadzu Co., Kyoto, Japan) with a fused silica capillary column

(CP-SIL 8 CB low bleed/MS; 30 m 6 0.25 mm inner diameter,

film thickness: 0.25 mm; Agilent Co., Palo Alto, CA). The front

inlet temperature was 230uC. The flow rate of helium gas through

the column was 39.0 cm/sec. The column temperature was held

at 80uC for 2 min and then raised by 15uC/min to 330uC and

held there for 6 min. The transfer line and ion-source tempera-

tures were 250uC and 200uC, respectively. Twenty scans per

second were recorded over the mass range 85–500 m/z using the

Advanced Scanning Speed Protocol (ASSP, Shimadzu Co.). In this

study, the detection voltage was confirmed every day before GC/

MS analysis, because this value reflects on the degree of

contamination in the instrument. In addition, the blank samples

were measured before measurement of the serum samples. During

GC/MS analysis, the 20 samples per 1 day were measured, and

the septum and glass liner in the GC inlet were changed every 100

injections to the column.

Data processing was performed according to the methods

described in previous reports [8,9]. Briefly, MS data were exported
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in netCDF format. The peak detection and alignment were

performed using the MetAlign software (Wageningen UR, The

Netherlands). The resultant data were exported in CSV format

and then analyzed with in-house analytical software (AIoutput).

This software enables peak identification and semi-quantification

using an in-house metabolite library. For semi-quantification, the

peak height of each ion was calculated and normalized to the peak

height of 2-isopropylmalic acid as an internal standard. Names

were assigned to each metabolite peak based on the method

described in a previous report [9]. All data obtained from the

serum samples were subjected to MetAlign software at once,

because the same alignment conditions needed to be performed

during all data analysis. In GC/MS analysis, multiple peaks are

sometimes detected for a particular metabolite due to TMS-

derivatization, isomeric form, etc. In such cases, the peak that most

reflected the level of the metabolite was adopted for the semi-

quantitative evaluation.

Statistical Analysis
The patients (N = 119) were allocated to the training and

validation sets as follows. The colorectal cancer patient samples for

the training set were collected without preset selection criteria, and

12 colorectal cancer patients were selected for each disease stage

(N = 60). As for the healthy volunteers used for the training set,

age- and sex-controlled samples were prepared (N = 60). In the

training set study, the levels of metabolites were compared

between colorectal cancer patients and healthy volunteers using

the Mann-Whitney U test. Among the metabolites that displayed

significantly different levels among the groups (p,0.05), we

selected the metabolites with RSD% values of no more than

20% and that did not display significant intra-day or inter-day

variances according to the Wilcoxon signed-rank test and Steel-

Dwass test, respectively. The selected metabolites were subjected

to a stepwise variable selection method followed by multiple

logistic regression analysis, and these analyses were performed

using the default conditions of JMP9 (SAS Institute Inc., Cary,

NC). The multicollinearity of the metabolites selected via the

stepwise variable selection method was confirmed by calculating

their variance inflation factors (VIF). AICc, which is Akaike’s

Information Criterion (AIC) with a correction for finite sample

sizes, was calculated to elucidate the optimal number of factors to

include in the predictive model. Nagelkerke R2 was also calculated

to evaluate the fitness of the multivariate logistic model. Receiver

operating characteristic (ROC) analysis was carried out using

JMP9 (SAS Institute Inc.), and the optimal cut-off value and AUC,

specificity, sensitivity, and accuracy were calculated. In the

validation set study, the prediction model was re-evaluated using

different samples, and the specificity, sensitivity, and accuracy of

the model were examined using the cut-off value obtained from

the training set. p values of less than 0.05 were considered to

indicate a significant difference.

Results

In our GC/MS-based metabolomic analysis system, which

mainly targeted water-soluble metabolites, 132 metabolites were

detected in the subjects’ sera (Table S3). Among the 132

metabolites, 1 metabolite; i.e., 2-isopropylmalic acid, was used as

Table 1. Subject information for the training and validation sets.

Training set Validation set

Colorectal cancer
patients

Healthy
volunteers Significance

Colorectal cancer
patients

Healthy
volunteers Significance

N 60 60 59 63

Male 39 39 30 32

Female 21 21 29 31

Age (years)

Mean 67.7 64.5 N.S. 64.8 62.8 N.S.

Median 70 68 66 63

Range 36–88 39–88 31–84 47–73

BMI (%) 21.9 22.1 N.S. 22.5 22.2 N.S.

TNM stage Zero 12 2 15 2

I 12 2 11 2

II 12 2 3 2

III 12 2 11 2

IV 12 2 19 2

Cancer location Ascending colon 9 2 8 2

Transverse colon 9 2 4 2

Descending colon 2 2 3 2

Sigmoid colon 14 2 18 2

Cecum 5 2 9 2

Rectum 21 2 17 2

The differences in the mean age and BMI value (%) between the colorectal cancer patients and healthy volunteers were evaluated using the Mann-Whitney U test. N.S.,
not significant.
doi:10.1371/journal.pone.0040459.t001
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an internal standard, and 5 metabolites were probably extracted

from non-serum, for example, they were derived from eppendorf

tubes. Therefore, these 6 metabolites were excluded from the

subsequent analyses. Since oxalacetic acid was converted to

pyruvate during the pre-treatment procedure, oxalacetic acid was

detected as pyruvate in our system. Therefore, it is described as

‘pyruvate+oxalacetic acid’ in the Supporting tables and as

‘pyruvate’, which was actually detected by GC/MS analysis, in

this manuscript. Due to their similar structures, citric acid and

isocitric acid were detected at the same retention time by our

system. Therefore, they are described as ‘citric acid+isocitric acid’.

Since cysteamine was converted to cystamine during the pre-

treatment procedure, cysteamine was detected as cystamine by our

system. Therefore, it is described as ‘cysteamine+cystamine’ in the

Supporting tables and as ‘cystamine’, which was actually detected

by GC/MS analysis, in this manuscript. Since cysteine was

converted to cystine during the pre-treatment procedure, cysteine

was detected as cystine by our system. Therefore, it is described as

‘cysteine+cystine’ in the Supporting tables and as ‘cystine’, which

was actually detected by GC/MS analysis, in this manuscript.

To evaluate the stability of this system using human serum, the

serum levels of various metabolites were separately analyzed using

serum samples (N = 10) obtained from 1 healthy volunteer (male, 30

years old), and then the RSD% values of the metabolites were

calculated (Table S3). The percentage of metabolites with RSD%

values of less than 20% and 30% was 68.5% and 86.5%,

respectively. Next, the inter-day (among 3 days) and intra-day

(morning, daytime, and night) variances of the serum metabolites

were evaluated using the Wilcoxon signed-rank test and Steel-

Dwass test, respectively (Table S3), because the significant intra-day

and/or inter-day variance is likely to lead to the low sensitivity and

specificity at the clinical use. Many metabolites did not display

significant inter-day and intra-day variances, but 30 metabolites, for

example dihydroxyacetone and tryptophan, demonstrated signifi-

cant variations. In GC/MS analysis, multiple peaks are sometimes

detected for a particular metabolite due to TMS-derivatization,

isomeric form, etc. In such cases, the peak that most reflects the level

of the metabolite was adopted for the subsequent evaluation. For

these metabolites, the terms ‘_1’, ‘_2’, and ‘(-TMS)’ were added to

the ends of their names according to the method of a previous report

[9]. The excluded peaks are indicated by the term ‘Minor’ in Table

S4, and after excluding the ‘Minor’ peaks a total of 107 metabolites

had their levels compared between colorectal cancer patients and

healthy volunteers (Figure 1, Table S4).

In the training set study, the serum metabolite levels of the

colorectal cancer patients and health volunteers were compared

using the Mann-Whitney U test (Table S4). The training set was

composed of colorectal cancer patients (N = 60) and age- and sex-

matched healthy volunteers (N = 60) (Table 1, Table S1). There

was no significant difference in the mean age or BMI values of the

two groups (Table 1). In this study, colorectal cancer was also

classified into 2 groups; i.e., group 1 included stage 0, 1, and 2

disease (absence of invasion and metastasis) and group 2 included

stage 3 and 4 disease (presence of invasion and metastasis). From

the results of the GC/MS analysis, 27 metabolites that met the

following conditions were selected as biomarker candidates: an

RSD% value of ,20%; no significant (p$0.05) intra-day or inter-

day variances according to the Wilcoxon signed-rank test and

Steel-Dwass test; and the presence of a significant difference

(p,0.05) between the levels of the colorectal cancer patients and

healthy volunteers according to the Mann-Whitney U test. ROC

curves were produced using the data for these 27 metabolites,

(Figure S1), and the cut-off value, AUC, sensitivity, specificity, and

accuracy of each metabolite were calculated (Table 2). As a result,

Figure 1. Comparison of serum metabolite levels between
colorectal cancer patients and healthy volunteers. The mean fold
changes in the levels of 107 metabolites observed in a comparison
between colorectal cancer patients (N = 60) and healthy volunteers
(N = 60) (training set) are shown in Figure 1. In GC/MS analysis, multiple
peaks are sometimes detected for a particular metabolite due to TMS-
derivatization, isomeric form, etc. In such cases, the peak that most
reflected the level of the metabolite was adopted for the subsequent
evaluation. In addition, each metabolite had the term ‘_1’, ‘_2’, or ‘(-
TMS)’ added to the end of its name, as described in a previous report
[7]. This figure does not include background metabolites or minor peak-
derived metabolites.
doi:10.1371/journal.pone.0040459.g001
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nonanoic acid (C9) and p-hydroxybenzoic acid displayed relatively

high sensitivity, with values of 86.7% and 90%, respectively.

Regarding specificity, cystamine and cystine both exhibited values

of 90%, and ornithine (86.7%), citrulline (85.0%), and palmitole-

ate (85.0%) also demonstrated relatively high specificity. However,

there were no metabolites with accuracy values of greater than

80%, suggesting the necessity of performing evaluations using

multiple metabolite biomarkers.

As a new evaluation method, the applicability of a multiple

logistic regression model involving multiple metabolite biomarkers

was examined. Among the 27 metabolites, the 10 metabolites that

displayed the greatest differences between their levels in the

colorectal cancer patients and those in the healthy volunteers and

had the higher levels in the colorectal cancer patients compared

with the healthy volunteers were selected: cystamine, cystine,

aspartic acid, arabinose, p-hydroxybenzoic acid, glutamic acid, 2-

hydroxybutyrate, kynurenine, meso-erythritol, and lactitol (Table 3).

Most of these metabolites displayed significantly-altered levels in the

stage 0–4 (N = 60), stage 0–2 (N = 36), and stage 3–4 (N = 24)

groups. Among these metabolites, arabinose, meso-erythritol, and

lactitol are frequently consumed in the diet. Therefore, the

remaining 7 metabolites were subjected to a stepwise variable

selection method. As a result, 2-hydroxybutyrate, aspartic acid,

kynurenine, and cystamine were selected. These 4 metabolites did

not display multicollinearity (data not shown). Then, a multiple

logistic regression model for predicting colorectal cancer was

established on the basis of the data for these metabolites (Table 4).

The prediction model is as follows:

p = 1/[1+e2{28.32+286.59(2-hydroxybutyrate)+33.87(aspartic

acid)+1634.96(kynurenine)+78.78(cystamine)}].

The Nagelkerke R2 value was 0.4533. The AUC, sensitivity,

specificity, and accuracy of this model were 0.9097 {95%

confidence interval (95% CI): from 0.8438 to 0.9495}, 85.0%,

85.0%, and 85.0%, respectively (Table 5, Figure 2). Although we

selected 2, 3, 5, or 6 metabolites via the stepwise variable selection

method and then performed further multiple logistic regression

analyses, we could not establish a better model (data not shown).

On the contrary, when the training set data were used, the

sensitivity, specificity, and accuracy of CEA were 35.0%, 96.7%,

and 65.8%, respectively, and those of CA19-9 were 16.7%, 100%,

Table 2. The sensitivity and specificity of the metabolites whose levels differed significantly between the colorectal cancer
patients and healthy volunteers.

Training set Validation set

Compounds Sensitivity Specificity Accuracy AUC (95% CI) Cut-off Sensitivity Specificity Accuracy

Pyruvate 75.0 61.7 68.3 0.6888 (0.5866–0.7755) 0.31200 72.9 69.8 71.3

2-hydroxy-butyrate 56.7 83.3 70.0 0.7418 (0.6448–0.8199) 0.00965 55.9 69.8 63.1

Phosphate 60.0 68.3 64.2 0.6303 (0.5256–0.7240) 0.45960 49.2 61.9 55.7

Isoleucine 76.7 53.3 65.0 0.6719 (0.5695–0.7603) 0.02162 69.5 52.4 60.7

Nonanoic acid(C9) 86.7 46.7 66.7 0.6568 (0.5515–0.7489) 0.00483 25.4 61.9 44.3

b-alanine 75.0 46.7 60.8 0.6153 (0.5106–0.7102) 0.00192 74.6 38.1 55.7

meso-erythritol 73.3 56.7 65.0 0.6571 (0.5537–0.7477) 0.01524 66.1 57.1 61.5

Aspartic acid 65.0 80.0 72.5 0.7001 (0.5957–0.7870) 0.03750 69.5 71.4 70.5

Pyroglutamic acid 61.7 76.7 69.2 0.7333 (0.6348–0.8127) 0.53590 59.3 79.4 69.7

Creatinine 71.7 63.3 67.5 0.6517 (0.5460–0.7442) 0.00094 44.1 54.0 49.2

Glutamic acid 76.7 66.7 71.7 0.7547 (0.6556–0.8326) 0.10640 78.0 65.1 71.3

p-hydroxybenzoic acid 90.0 65.0 77.5 0.7660 (0.6630–0.8446) 0.00084 81.4 57.1 68.9

Arabinose 76.7 70.0 73.3 0.7860 (0.6922–0.8573) 0.00206 69.5 68.3 68.9

Ribulose 51.7 73.3 62.5 0.6093 (0.5041–0.7055) 0.00253 49.2 36.5 42.6

Asparagine 66.7 55.0 60.8 0.6054 (0.5001–0.7016) 0.01345 61.0 50.8 55.7

Xylitol 56.7 78.3 67.5 0.6749 (0.5716–0.7642) 0.00252 61.0 69.8 65.6

O-phosphoethanolamine 76.7 51.7 64.2 0.6276 (0.5224–0.7217) 0.00209 33.9 65.1 50.0

Ornithine 38.3 86.7 62.5 0.6450 (0.5413–0.7367) 0.04155 42.4 85.7 64.8

Citrulline 41.7 85.0 63.3 0.6058 (0.4967–0.7054) 0.00459 49.2 76.2 63.1

Glucuronate_1 71.7 58.3 65.0 0.6575 (0.5532–0.7485) 0.00470 47.5 84.1 66.4

Glucosamine_2 70.0 70.0 70.0 0.6931 (0.5868–0.7817) 0.00308 80.0 69.8 74.6

Palmitoleate 40.0 85.0 62.5 0.6071 (0.5022–0.7032) 0.00420 35.6 81.0 59.0

Inositol 55.0 70.0 62.5 0.6260 (0.5209–0.7196) 0.14210 44.1 73.0 59.0

Kynurenine 70.0 80.0 75.0 0.8018 (0.7126–0.8686) 0.00109 67.8 73.0 70.5

Cystamine 55.0 90.0 72.5 0.7497 0.6522–0.8267) 0.03885 49.2 79.4 64.8

Cystine 46.7 90.0 68.3 0.7192 (0.6196–0.8011) 0.04477 55.9 93.7 75.4

Lactitol 48.3 78.3 63.3 0.6139 (0.5088–0.7093) 0.00036 40.7 77.8 59.8

The sensitivity, specificity, accuracy, AUC (95% CI), and cut-off values were calculated from the training set data by ROC analysis, as shown in Figure S1. When the
validation set was used, sensitivity, specificity, and accuracy were evaluated using the cut-off value obtained from the training set.
doi:10.1371/journal.pone.0040459.t002
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and 58.3%, respectively. Our prediction model also showed high

sensitivity (83.3%) in the stage 0–2 colorectal cancer patient group,

whereas CEA and CA19-9 displayed sensitivities of 30.6% and

5.6%, respectively.

The 27 metabolites selected in the training set (Table 2) and the

established prediction model were examined using the validation

set, which was composed of colorectal cancer patients (N = 59) and

healthy volunteers (N = 63) (Table 1, Table S2). Regarding the 27

metabolites, the sensitivity, specificity, and accuracy of the training

set were partially correlated with those of the validation set, and

the correlation coefficients for these parameters were 0.425, 0.655,

and 0.587, respectively (Figure S2). However, none of the

metabolites displayed high sensitivity, specificity, and accuracy

values (Table 2). On the contrary, when the validation set was used

the sensitivity, specificity, and accuracy of the prediction model

were 83.1%, 81.0%, and 82.0%, respectively, and these values

were almost the same as those obtained with the training set

(Table 5). In addition, the model also displayed high sensitivity for

detecting stage 0–2 colorectal cancer (82.8%).

Discussion

In this study, we investigated a new screening method for the

early diagnosis of colorectal cancer based on GC/MS metabo-

lomics. Although the training set included patients with early stage

colorectal cancer, such as stage 0 or stage 1, the prediction model

displayed high AUC (0.9097), sensitivity (85.0%), and accuracy

(85.0%) values, which were higher than those of serum tumor

markers (CA19-9 and CEA). In addition, when the validation set

was used the model also exhibited high sensitivity for early stage

colorectal cancer (83.1%). Taken together, the pathogenesis of

colorectal cancer seems to lead to alterations in the levels of a

variety of serum metabolites, although these fluctuations range

from small to large.

Evaluations of data obtained by metabolomics should be treated

carefully. For example, among the serum metabolites detected by

our GC/MS-based metabolomic system, intra-day and inter-day

variances were observed. For example, the tryptophan concen-

trations observed in the afternoon and at night were significantly

decreased in comparison with those detected in the morning

(Table S3 and Figure S3), and these differences might have been

due to the effects of diet and/or daily activity. Previous studies

have also demonstrated intra-day and inter-day variance in the

levels of some amino acids [10,11,12]. Therefore it is important to

evaluate the inter-day and intra-day variances of serum metabolite

levels in metabolomic research, and blood samples collected before

breakfast were used in this study. In addition, the accuracy of data

obtained by instrumental analysis of serum samples should be

Table 3. Biomarker candidates subjected to multivariate analysis using the stepwise variable selection method.

Stage 0–4 Stage 0–2 Stage 3–4

Compounds Fold induction p value Fold induction p value Fold induction p value Chemical class

Training set

Cystamine 1.43 ,0.0001 1.57 ,0.0001 1.21 0.076 Aliphatic and aryl amine

Cystine 1.55 ,0.0001 1.81 ,0.0001 1.16 0.23 Amino acid

Aspartic acid 1.59 0.0002 1.52 0.0032 1.69 0.0011 Amino acid

Arabinose 1.65 ,0.0001 1.61 ,0.0001 1.71 ,0.0001 Carbohydrate

p-hydroxybenzoic acid 1.77 ,0.0001 1.89 ,0.0001 1.58 0.0004 Aromatic acid

Glutamic acid 1.82 ,0.0001 1.54 ,0.0001 2.24 ,0.0001 Amino acid

2-hydroxy-butyrate 1.83 ,0.0001 1.59 ,0.0001 2.18 0.00050 Hydroxy acid

Kynurenine 1.83 ,0.0001 1.74 ,0.0001 1.96 ,0.0001 Amino acid

meso-erythritol 2.83 0.0030 3.01 0.0065 2.57 0.042 Alcohol and polyol

Lactitol 7.44 0.0316 1.16 0.53 16.9 0.0013 Alcohol and polyol

The 7 metabolites subjected to multivariate analysis using the stepwise variable selection method are listed in Table 3. Among these metabolites, arabinose, meso-
erythritol, and lactitol are excluded, because they are frequently consumed in the diet. The concentration of each metabolite in the colorectal cancer patients with stage
0–4, stage 0–2, or stage 3–4 disease at the training set was compared with that detected in the healthy volunteers, and the fold induction was calculated. P values were
evaluated using the Mann-Whitney U test, and p values of less than 0.05 were considered to indicate a significant difference.
doi:10.1371/journal.pone.0040459.t003

Table 4. Biomarkers for detecting colorectal cancer selected by the multiple logistic regression model.

Biomarkers Coefficient Standard error p value Lower 95% CI Upper 95% CI

(Intercept) 28.32 1.539 ,0.0001 211.71 25.621

2-hydroxy-butyrate 286.59 71.90 ,0.0001 155.0 440.1

Aspartic acid 33.87 14.29 0.0178 7.390 63.85

Kynurenine 1634.96 569.3 0.0041 559.1 2.830E+03

Cystamine 78.78 26.82 0.0033 31.53 137.3

The 4 metabolites selected by multiple logistic regression analysis using the stepwise variable selection method. The results of the analysis are shown in Table 4. The
95% confidence interval (95% CI) for the AUC (0.9097) obtained from ROC analysis ranged from 0.8438 to 0.9495.
doi:10.1371/journal.pone.0040459.t004
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carefully assessed because it can be affected by the method

employed. Therefore, to discover reliable novel metabolite

biomarkers, we calculated the RSD% values for the serum

metabolite levels obtained by GC/MS analysis and then evaluated

the inter-day and intra-day variances in the concentration of each

serum metabolite. In GC/MS analysis, multiple peaks are

sometimes detected for a particular metabolite. For example,

there are variations in the number of TMS molecules that bind to

certain molecules, and hence, major and minor peaks are detected.

The minor peaks can be unstable, which can lead to incorrect

interpretation of the data. Actually, in this study the RSD% values

obtained by omitting the results for the minor peak-derived

metabolites were better than those obtained using all of the data:

when all data were used, the percentage of metabolites with

RSD% values of less than 20% and 30% was 68.5% and 86.5%,

respectively. In contrast, when the results for the minor peak-

derived metabolites were omitted, they were 72.0% and 90.0%,

respectively. Thus, the accurate evaluation of data obtained by

metabolomics is expected to produce useful information. Based on

these evaluations, 27 metabolites were selected as metabolite

biomarker candidates, but these metabolites displayed individual

AUC values of 0.6–0.8 and relatively low sensitivity or specificity

(Table 2), indicating that single metabolite biomarkers are not

practical for disease screening and/or diagnosis and that the use of

multiple biomarkers might be better for discovering candidates

with high sensitivity and specificity, although metabolomic

approaches have been widely utilized to discover single disease

biomarkers. Then, with the aim of evaluating the utility of multiple

biomarkers for diagnosing colorectal cancer, multiple logistic

regression analysis using the stepwise variable selection method (in

this study) and principal component analysis (PCA) (data not

shown) were carried out. However, PCA did not produce valuable

results. PCA is an analytical method for analyzing a reduced

number of variables; i.e., it is a dimension reduction technique,

and has no dependent variables. On the contrary, multiple logistic

regression analysis with the stepwise variable selection method can

be used to select the optimal subset of variables and requires

dependent variables. Thus, PCA might be unsuitable for large-

scale studies because it can produce unexpected differences

between the groups being compared, although supervised PCA,

partial least squares discriminant analysis (PLS-DA), and orthog-

onal PLS-DA (OPLS-DA) may be applicable to establish the

diagnosis models, because discrimination between colorectal

cancer patients and controls was shown via OPLS-DA [13].

The established prediction model was composed of 4 metab-

olites; i.e., 2-hydroxybutyrate, aspartic acid, kynurenine, and

Table 5. The sensitivity and specificity of tumor biomarkers and the prediction model.

Training set

CEA CA19-9 Prediction model

Stage 0–4 Stage 0–2 Stage 3–4 Stage 0–4 Stage 0–2 Stage 3–4 Stage 0–4 Stage 0–2 Stage 3–4

Sensitivity 35.0% 30.6% 37.5% 16.7% 5.6% 29.2% 85.0% 83.3% 87.5%

Specificity 96.7% 2 2 100% 2 2 85.0% 2 2

Accuracy 65.8% 2 2 58.3% 2 2 85.0% 2 2

Validation set

CEA CA19-9 Prediction model

Stage 0–4 Stage 0–2 Stage 3–4 Stage 0–4 Stage 0–2 Stage 3–4 Stage 0–4 Stage 0–2 Stage 3–4

Sensitivity 33.9% 6.9% 60.0% 13.6% 0% 26.7% 83.1% 82.8% 83.3%

Specificity 96.8% 2 2 100% 2 2 81.0% 2 2

Accuracy 66.4% 2 2 58.2% 2 2 82.0% 2 2

The sensitivity, specificity, and accuracy of CEA, CA19-9, and the prediction model were calculated using the cut-off value obtained from the ROC analysis. The cut-off
values of CEA, CA19-9, and the prediction model were 5 ng/ml, 37 U/ml, and 0.4945, respectively.
doi:10.1371/journal.pone.0040459.t005

Figure 2. ROC curve of the established prediction model. The
solid curve is the ROC curve for the prediction model established on the
basis of the training set. The AUC and cut-off values were 0.9097 {95%
confidence interval (95% CI): 0.8438–0.9495} and 0.4945, respectively.
The sensitivity, specificity, and accuracy of this model are summarized
in Table 5.
doi:10.1371/journal.pone.0040459.g002
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cystamine (cysteamine+cystamine). 2-hydroxybutyrate is formed as

a by-product during the formation of a-ketobutyrate via a reaction

catalyzed by lactate dehydrogenase or a-hydroxybutyrate dehy-

drogenase. In a previous study [13], the increased level of 2-

hydroxybutyric acid in sera of colorectal cancer patients was

observed, being consistent with our results. The serum a-

hydroxybutyrate dehydrogenase and total lactate dehydrogenase

activities of ovarian cancer patients were significantly higher than

those of patients with benign ovarian tumor [14], but the level of

lactic acid in colorectal cancer was lower than that in healthy

volunteers (Table S4). Therefore, 2-hydroxybutyrate would not be

produced in the blood by lactate dehydrogenase, but the

enzymatic production of 2-hydroxybutyrate by a-hydroxybutyrate

dehydrogenase might be caused in blood and/or 2-hydroxybuty-

rate would be secreted from cells. Recently, it was demonstrated

that 2-hydroxybutyrate is an early marker of both insulin

resistance and impaired glucose regulation, and it was suggested

that the underlying biochemical mechanisms might involve

increased lipid oxidation and oxidative stress [15]. Direct and/or

indirect actions of colorectal tumors might lead to upregulated

levels of 2-hydroxybutyrate, although the mechanisms by which 2-

hydroxybutyrate is regulated/converted in colorectal tissues

remain unknown yet. Aspartic acid is basically produced from

oxaloacetate by transamination. Increased serum/plasma levels of

aspartic acid are observed in patients suffering from acute seizures

[16] or Alzheimer’s disease [17]. A relationship between amino

acid levels and cancer has recently been demonstrated by a large-

scale study. The alterations in the serum levels of amino acids

observed in cancer patients might be closely associated with the

nutritional demands of tumor cells; i.e., tumor progression requires

increased nutrient uptake. Regarding histidine, tyrosine and

cysteine (cysteine+cystine), their serum levels in the colorectal

cancer patients with stage 0–2 disease were higher than those with

stage 3–4 disease, (Table S5). The serum level of lysine was

significantly lower in the stage 3–4 colorectal cancer patients

compared with the healthy volunteers. On the contrary, the serum

levels of some amino acids including aspartic acid were more

strongly enhanced in the stage 3–4 colorectal cancer patients

compared with the stage 0–2 colorectal cancer patients (Table S5).

In a previous study, various amino acids including aspartic acid

displayed higher levels in colorectal tumor tissues than in normal

colorectal tissues [5,18,19], indicating that tumor cells may need

the nutrient. However, some inconsistencies among various

research groups could be confirmed. Miyagi et al. and Qui et al.

demonstrated that serum levels of most amino acids were

decreased in the colorectal cancer patients [13,20]. In the study

by Bertini et al., serum levels of some amino acids were higher in

the colorectal cancer patients, and others were lower [21].

However, in their reports, the results of aspartic acid were not

represented, and therefore the relationship between amino acids

and disease states of colorectal cancer need to be evaluated in

detail. In addition, as suggested by Kimura et al. [22], it might be

necessary to evaluate amino acid-to-amino acid, amino acid-to-

other metabolite, amino acid-to protein, and/or amino acid-to-

gene interaction networks in order to elucidate the mechanisms

responsible for these phenomena. Kynurenine, which is a central

compound in the tryptophan metabolism pathway, is used in the

production of niacin. Previously, Huang et al. reported that the

serum kynurenine/tryptophan ratio was higher in colorectal

cancer patients than in ‘non-cancer’ controls, although no

increased level of kynurenine was observed [23]. The ‘non-cancer’

controls did not seem to be healthy volunteers because they were

also referred to as the ‘control patients’. Recently, higher levels of

kynurenine were observed in samples from patients diagnosed with

colon carcinoma, adenoma tubule villosum, or tubular adenoma

than in those from the control group [24]. Tryptophan is

metabolized to kynurenine by indoleamine 2,3-dioxygenase.

Therefore, tryptophan metabolism might be upregulated in

colorectal cancer patients. Cysteamine is the simplest stable

aminothiol found in the body and is a product of the constitutive

degradation of coenzyme A. Cysteamine is a precursor for the

formation of hypotaurine (which is subsequently oxidized to

taurine) by cysteamine dioxygenase. In this study, the colorectal

cancer patients displayed significantly higher taurine serum levels

than the healthy volunteers (Table S5). Cysteamine is also a

degradation product of the amino acid cysteine. In our study, the

colorectal cancer patients displayed significantly-higher cystine

(cysteine+cystine) levels than the healthy volunteers (Table S5). In

addition, the colorectal cancer patients with stage 0–2 disease

demonstrated the higher levels of cystine (cysteine+cystine),

cystamine (cysteamine+cystamine), and taurine than the colorectal

cancer patients with stage 3–4 disease (Table S5), suggesting that

tumor invasion and metastasis affect these metabolite levels. The

higher levels of cysteine, taurine, and hypotaurine were observed

in the colorectal cancer tissues compared with the normal tissue

[5,18]. Taken together, the metabolic pathways involving cysteine,

cysteamine, and taurine might be useful for differentiating between

colorectal cancer patients and healthy volunteers.

In conclusion, our findings suggest that GC/MS-based serum

metabolomics could be used as a novel method for colorectal

cancer screening tests. Research on new screening methods for

the early diagnosis of colorectal cancer has been performed

around the world, and the methylation of serum NEUROG1

[25], the serum dermokine level [26], and serum hydroxylated

polyunsaturated ultra-long-chain fatty acid levels [27] have been

demonstrated to be serum biomarker candidates for the early

detection of colorectal cancer. We developed a metabolomics-

based prediction model for colorectal cancer involving multiple

biomarkers, and the sensitivity of the model for detecting early

stage colorectal cancer patients was the same or better than

those of previously described methods [25,26,27]. In this study,

serum metabolome analysis was able to describe the status of

colorectal cancer patients rather than simply detect the presence

of colorectal cancer, which might be explained by our use of

multiple biomarkers. Recently, the Human Serum Metabolome

Consortium recommended methods for sample collection,

sample preparation, and data acquisition for LC/MS and

GC/MS in long-term and large-scale metabolomic studies [28],

and metabolomic studies in the clinical research field have

gradually been gaining attention. In metabolomics, information

about various metabolites can be obtained via a single

measurement. Determining the concentrations of the 4 metab-

olites selected in this study is crucial for the future clinical

application of our model, and moreover the development of

easier methods, for example enzyme-linked immunosorbent

assay (ELISA) systems and procedures based on enzyme

chemistry, is also important. Taken together, our findings will

hopefully lead to an improved quality of life via the early

detection of colorectal cancer.

Supporting Information

Figure S1 ROC curve of the metabolites that displayed
significantly-different concentrations between the co-
lorectal cancer patients and healthy volunteers. The

solid curve is the ROC curve for pyruvate+oxalacetic acid, 2-

hydroxybutyrate, phosphate, isoleucine, nonanoic acid(C9), b-

alanine, meso-erythritol, aspartic acid, pyroglutamic acid,
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creatinine, glutamic acid, p-hydroxybenzoic acid, arabinose,

ribulose, asparagine, xylitol, O-phosphoethanolamine, orni-

thine, citrulline, glucuronate_1, glucosamine_2, palmitoleate,

inositol, kynurenine, cysteamine+cystamine, cysteine+cystine,

and lactitol obtained from the training set. The AUC, cut-off

value, sensitivity, specificity, and accuracy values are summa-

rized in Table 2.

(TIFF)

Figure S2 The associations between the sensitivity,
specificity, and accuracy values of the training and
validation sets. Regarding the 27 targeted metabolites, scatter

plots of the sensitivity, specificity, and accuracy of the training and

validation sets were produced, and then the associations between

the training and validation sets were evaluated. The coefficients of

correlation for the sensitivity, specificity, and accuracy values of

the two sets were 0.425, 0.655, and 0.587, respectively.

(TIFF)

Figure S3 The inter-day and intra-day variances of
tryptophan. The inter-day and intra-day variances of the

serum levels of tryptophan were evaluated. To confirm the

intra-day variance, blood was collected before breakfast (A),

before lunch (B), and before dinner (C). For the inter-day

variance, blood was collected before breakfast for a total of 3

days (Day 1, Day 2, and Day 3). The data are shown as mean 6

standard deviation values (N = 16). Asterisks indicate the

significant differences by the Wilcoxon signed-rank test and/

or Steel-Dwass test (p,0.05).

(TIFF)

Table S1 Subject information for the training set.
(DOC)

Table S2 Subject information for the validation set.
(DOC)

Table S3 The RSD%, inter-day variance, and intra-day
variance values of serum metabolites.

(DOC)

Table S4 Comparison of serum metabolite levels
between the colorectal cancer patients and healthy
volunteers in the training set.

(DOC)

Table S5 Comparison of serum metabolite levels
between the colorectal cancer patients and healthy
volunteers in the data set mixing the training set with
the validation set.

(DOC)
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